
Dynamic Programming

Dynamic Programming

• Dynamic Programming is a general algorithm design technique
• for solving problems defined by or formulated as recurrences with

overlapping subinstances

• Invented by American mathematician Richard Bellman in the
1950s to solve optimization problems and later assimilated by CS

• “Programming” here means “planning”

• Main idea:
- set up a recurrence relating a solution to a larger instance to solutions of some

smaller instances
• - solve smaller instances once
- record solutions in a table
- extract solution to the initial instance from that table

Example: Fibonacci numbers (cont.)

Computing the nth Fibonacci number using bottom-up iteration and recording
results:

 F(0) = 0
 F(1) = 1
 F(2) = 1+0 = 1
 …
 F(n-2) =
 F(n-1) =
 F(n) = F(n-1) + F(n-2)

 Efficiency:
 - time
 - space

 0

 1

 1

 . . .

 F(n-2)

F(n-1)

 F(n)

n
n

What if we solve it
recursively?

Examples of DP algorithms

• Computing a binomial coefficient

• Longest common subsequence

• Warshall’s algorithm for transitive closure

• Floyd’s algorithm for all-pairs shortest paths

• Constructing an optimal binary search tree

• Some instances of difficult discrete optimization problems:

 - traveling salesman
 - knapsack

Optimal Binary Search Trees

Problem: Given n keys a1 < …< an and probabilities p1, …, pn

 searching for them, find a BST with a minimum
 average number of comparisons in successful search.

Since total number of BSTs with n nodes is given by C(2n,n)/(n+1), which grows
exponentially, brute force is hopeless.

Example: What is an optimal BST for keys A, B, C, and D with
 search probabilities 0.1, 0.2, 0.4, and 0.3, respectively?

D

A

B

C

Average # of comparisons = 1*0.4 +
2*(0.2+0.3) + 3*0.1 = 1.7

DP for Optimal BST Problem

Let C[i,j] be minimum average number of comparisons made in T[i,j], optimal BST for keys
ai < …< aj , where 1 ≤ i ≤ j ≤ n. Consider optimal BST among all BSTs with some ak (i ≤ k ≤
j) as their root; T[i,j] is the best among them.

a

Optimal

BST for

a , ..., a

Optimal

BST for

a , ..., ai

k

k-1 k+1 j

C[i,j] =

 min {pk · 1 +

 ∑ ps (level as in T[i,k-1] +1) +

 ∑ ps (level as in T[k+1,j] +1)}

i ≤ k ≤ j

s = i

k-1

s =k+1

j

DP for Optimal BST Problem (cont.)
After simplifications, we obtain the recurrence for C[i,j]:

C[i,j] = min {C[i,k-1] + C[k+1,j]} + ∑ ps for 1 ≤ i ≤ j ≤ n

C[i,i] = pi for 1 ≤ i ≤ j ≤ n

s = i

j

i ≤ k ≤ j

Example: key A B C D

 probability 0.1 0.2 0.4 0.3

The tables below are filled diagonal by diagonal: the left one is filled using the recurrence
 C[i,j] = min {C[i,k-1] + C[k+1,j]} + ∑ ps , C[i,i] = pi ;

the right one, for trees’ roots, records k’s values giving the minima

 0 1 2 3 4

1 0 .1 .4 1.1 1.7

2 0 .2 .8 1.4

3 0 .4 1.0

4 0 .3

5 0

 0 1 2 3 4

1 1 2 3 3

2 2 3 3

3 3 3

4 4

5

i ≤ k ≤ j s = i

j

optimal BST

B

A

C

D

i
j

i
j

Optimal Binary Search Trees

Analysis DP for Optimal BST Problem

Time efficiency: Θ(n3) but can be reduced to Θ(n2) by taking
 advantage of monotonicity of entries in the
 root table, i.e., R[i,j] is always in the range
 between R[i,j-1] and R[i+1,j]

Space efficiency: Θ(n2)

Method can be expanded to include unsuccessful searches

Application of dynamic programming

• Longest common subsequence problem

• Checker board

• Bio-informatics

• Matrix chain multiplication

Scope of research

• Linear search problem

Assignment

• Q.1)Differentiate Dynamic Programming with
Divide and conquer method.

• Q.2)Compare Dynamic Programming with
Greedy Method.

• Q.3) State the advantages of OBST over BST
with example.

