Dynamic Programming



Dynamic Programming

Dynamic Programming is a general algorithm design technique

for solving problems defined by or formulated as recurrences with
overlapping subinstances

Invented by American mathematician Richard Bellman in the
1950s to solve optimization problems and later assimilated by CS

“Programming” here means “planning”

Main idea:

- set up a recurrence relating a solution to a larger instance to solutions of some
smaller instances

* - solve smaller instances once
- record solutions in a table
- extract solution to the initial instance from that table



Example: Fibonacci numbers (cont.)

Comnouting ithe o™ Fivonacel number using votiom-ue ftzration and recording

rasules:

0 1 1 .. .| F(n-2) | F(n-1) | F(n)

Efficizney;
SAIIE n

- 30302



Examples of DP algorithms

Computing a binomial coefficient
Longest common subsequence
Warshall’s algorithm for transitive closure

Floyd’s algorithm for all-pairs shortest paths

Constructing an optimal binary search tree

Some instances of difficult discrete optimization problems:
- traveling salesman
- knapsack



Optimal Binary Search Trees

(e

Provlem: Glven ni2ys g, < ...< o, and orovailities g, .., o,
szarening for tnzrm, find 20 83T witn 2 minirmurs
gyarage nurmoer of cormparisons in succassiul searcr,

Jinez tota] numoer of BSTs with 1 nodes is given 0y C(2,0)/ (1), winich grows
sxoonznially, oruiz forea is nogzlass,

sxamole: Wnatis an ootimal JJJ‘ for xays A, 8, C, and D wit)
sazren orovavilities 0.7, 0.2, 0.4, and 0.3, resoaciivaly?

e Average # of comparisons =1*%0.4 +
Q Q 2*(0.2+0.3) +3*0.1=1.7



DP for Optimal BST Problem

83T for kays

[1,j] o2 minimurm avarags numozr of comoarisons madez in T,j], ootimzal
<< gy, wnerel s 7S S, Consider opiimal 83T among all 85Ts with some gy, (i< ks
j ) as inelr root; TILj] Is the vaestamong tnerr,

-

Clijl =

min {o,- 1+

Optimal Optimal s=1]
BST for 7 o, lzvel a in Tl j] +1);

BST for

Aj ey K1 Ak+1 v s &




DP for Optimal BST Problem (cont.)

Afear simolifications, we ootain ina racurrar)

ca for C[1,j]:
clijl= rmin{Clik-1]+ Clks1,j1} + 3 o, For1S idjsn

1 - 2 o 2 & 24
Cliil=p;i DKES IS jSn

(G
[l
—



Example: key A B C D
probability 0.1 0.2 04 0.3

ozlow arz fillzd diagonal oy diagonal: tne l2ft onz is fillzd using tha racurrznca
clijl= min{ClijeL) -+ CllerL jlp+ 7 o, ClLI) = p;;

tnz rignt onz, for trees’ roois, racords J's values giving tne minimz
igk ﬁj =]

o 23| 4 Lo 234
1 O .1 (.4 | 1L1]17 I I 2|33
2 0 |.2 | .8 |14 p 21313
3 O | .4 |10 3 313
4 () o) /l / .
! ’ optimal BST
5 ) 5




Optimal Binary Search Trees

ALGORITHM OptimalBST(P[1..n])
//T'inds an optimal binary search tree by dynamic programming
//Input: An array P|[l..n] of search probabilities for a sorted list of n keys
//Output: Average number of comparisons in successful searches in the

i/ optimal BST and table R of subtrees’ roots in the optimal BST
fori — 1tondo

Cli,i —1]«0

Cli, 1]« P[i]

R[i,i] «i

Cln+1,n] <0
for d < 1ton — 1 do //diagonal count
fori < 1ton —ddo
J—i+d
minval < oo
for k < i to j do
ifCli, k— 1]+ Clk + 1, j] < minval
minval < Cli, k — 1]+ Clk+ L, j]; kmin <k
R[i, j] < kmin
sum < Pli]; fors < i+ 1to j do sum < sum + P|s]
Cli, j] < minval + sum
return C[1, n]. R



Analysis DP for Optimal BST Problem

Time efficiency: ©(n?) but can be reduced to ©(n?) by taking
advantage of monotonicity of entries in the
root table, i.e., R[i,j] is always in the range
between Rl[i,j-1) and R[i+1,j]

Space efficiency: ©(n?)

Method can be expanded to include unsuccessful searches



Application of dynamic programming

Longest common subsequence problem
Checker board

Bio-informatics

Matrix chain multiplication



Scope of research

* Linear search problem



Assignment

* Q.1)Differentiate Dynamic Programming with
Divide and conquer method.

* Q.2)Compare Dynamic Programming with
Greedy Method.

e (Q.3) State the advantages of OBST over BST
with example.



